2个回答
展开全部
13.
=(1/3)e^(3x)x^2-(2/3)∫xe^(3x)dx
=(1/3)e^(3x)x^2-(2/9)e^(3x)x+(2/9)∫e^(3x)dx
=(1/3)e^(3x)x^2-(2/9)e^(3x)x+(2/27)e^(3x)+C
=(1/27)(9x^2-6x+2)e^(3x)|(-∞,0)
=2/27
14.=∫(cos(x/2))^2-(sin(x/2))^2/|sin(x/2)+cos(x/2)|dx
因为积分区间为(0,π/6) 所以,sin(x/2)+cos(x/2)>0
则原式=∫(cos(x/2)-(sin(x/2))(sin(x/2)+cos(x/2))/(sin(x/2)+cos(x/2))dx
=∫(cos(x/2)-(sin(x/2))dx
=2sin(x/2)+2cosx(x/2)|(0,π/6)
=2[sin(π/12)+cos(π/12)-1]
15.
=∫[(x+7/2)-7/2]/√(2x+7)dx
=1/2∫√(2x+7)dx-7/2*1/√(2x+7)dx
=1/6(2x+7)^(3/2)-7/2(2x+7)^(1/2)+C
=(1/3)e^(3x)x^2-(2/3)∫xe^(3x)dx
=(1/3)e^(3x)x^2-(2/9)e^(3x)x+(2/9)∫e^(3x)dx
=(1/3)e^(3x)x^2-(2/9)e^(3x)x+(2/27)e^(3x)+C
=(1/27)(9x^2-6x+2)e^(3x)|(-∞,0)
=2/27
14.=∫(cos(x/2))^2-(sin(x/2))^2/|sin(x/2)+cos(x/2)|dx
因为积分区间为(0,π/6) 所以,sin(x/2)+cos(x/2)>0
则原式=∫(cos(x/2)-(sin(x/2))(sin(x/2)+cos(x/2))/(sin(x/2)+cos(x/2))dx
=∫(cos(x/2)-(sin(x/2))dx
=2sin(x/2)+2cosx(x/2)|(0,π/6)
=2[sin(π/12)+cos(π/12)-1]
15.
=∫[(x+7/2)-7/2]/√(2x+7)dx
=1/2∫√(2x+7)dx-7/2*1/√(2x+7)dx
=1/6(2x+7)^(3/2)-7/2(2x+7)^(1/2)+C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询