大一高数题!求详细过程
10个回答
展开全部
1. y'' - y' = 1, 特征方程 r^2-r = 0, r = 0, 1.
特解应设为 y = ax, 代入微分方程得 a = -1,
则原微分方程的通解是 y = C1+C2e^x -ax.
2. z = xy,
(1) 记 F = xy-z, 则 Fx = y, Fy = x, Fz = 1
在点M(1, 1, 1), Fx = 1, Fy = 1, Fz = 1
切平面方程 1(x-1)+1(y-1)+1(z-1) = 0, 即 x+y+z = 3;
法线方程 (x-1)/1 = (y-1)/1 = (z-1)/1, 即 x = y = z.
(2) 构造拉格朗日函数 F = x^2y^2z^2 - k(xy-z)
则 Fx = 2xy^2z^2-ky = 0
Fy = 2yx^2z^2-kx = 0
Fz = 2zx^2y^2+k = 0
Fk = z-xy = 0
显然, x = y = z = 0 满足 , 此时 f = x^2y^2z^2 取最小值
3. (1) 积分域 D = D1 + D2,
D1 是以点 O(0, 0), A(0, -1), B(1, 0) 为顶点的直角三角形,
D2 由 x = √(1-y) 即抛物线 y = 1-x^2 与坐标轴围成。
交换积分次序,得
I = ∫<0, 1>dx∫<x-1, 1-x^2>(x+y+1)dy
= ∫<0, 1>dx[(x+1)y+y^2/2]<x-1, 1-x^2>
= ∫<0, 1>(1/2)(x^4-2x^3-7x^2+4x+4)dx
= (1/2)[x^5/5-x^4/2-7x^3/3+2x^2+4x]<0, 1> = 101/60
(2) 积分域关于 坐标平面 yOz, xOz 都对称, x , y 的奇函数积分为 0. 取柱坐标,
I = ∫∫∫<Ω>zdv = ∫<0, 1>dz∫<0, 2π>dt∫<0, z>zrdr
= 2π∫<0, 1>dz[zr^2/2]<0, z> = π∫<0, 1>z^3dz = π/4
特解应设为 y = ax, 代入微分方程得 a = -1,
则原微分方程的通解是 y = C1+C2e^x -ax.
2. z = xy,
(1) 记 F = xy-z, 则 Fx = y, Fy = x, Fz = 1
在点M(1, 1, 1), Fx = 1, Fy = 1, Fz = 1
切平面方程 1(x-1)+1(y-1)+1(z-1) = 0, 即 x+y+z = 3;
法线方程 (x-1)/1 = (y-1)/1 = (z-1)/1, 即 x = y = z.
(2) 构造拉格朗日函数 F = x^2y^2z^2 - k(xy-z)
则 Fx = 2xy^2z^2-ky = 0
Fy = 2yx^2z^2-kx = 0
Fz = 2zx^2y^2+k = 0
Fk = z-xy = 0
显然, x = y = z = 0 满足 , 此时 f = x^2y^2z^2 取最小值
3. (1) 积分域 D = D1 + D2,
D1 是以点 O(0, 0), A(0, -1), B(1, 0) 为顶点的直角三角形,
D2 由 x = √(1-y) 即抛物线 y = 1-x^2 与坐标轴围成。
交换积分次序,得
I = ∫<0, 1>dx∫<x-1, 1-x^2>(x+y+1)dy
= ∫<0, 1>dx[(x+1)y+y^2/2]<x-1, 1-x^2>
= ∫<0, 1>(1/2)(x^4-2x^3-7x^2+4x+4)dx
= (1/2)[x^5/5-x^4/2-7x^3/3+2x^2+4x]<0, 1> = 101/60
(2) 积分域关于 坐标平面 yOz, xOz 都对称, x , y 的奇函数积分为 0. 取柱坐标,
I = ∫∫∫<Ω>zdv = ∫<0, 1>dz∫<0, 2π>dt∫<0, z>zrdr
= 2π∫<0, 1>dz[zr^2/2]<0, z> = π∫<0, 1>z^3dz = π/4
展开全部
假设 yc(x)=e^(λx) 带入原式,λ^2-λ=0,
得到 λ = 0 或 λ =1
于是 yc(x) = c1+c2e^x
再有,设 yp(x) = ax,带入原式,得到 a = -1
最后:y(x) = yc(x)+yp(x) = -x + c1 + c2e^x
得到 λ = 0 或 λ =1
于是 yc(x) = c1+c2e^x
再有,设 yp(x) = ax,带入原式,得到 a = -1
最后:y(x) = yc(x)+yp(x) = -x + c1 + c2e^x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
嘻嘻嘻嘻,原来会,现在不会啦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询