请问这道微积分怎么解决,第八道
2个回答
展开全部
(8)
ln√(x^2+y^2) = arctan(y/x)
(1/2)ln(x^2+y^2) = arctan(y/x)
两边求导
(x + y.dy/dx)/(x^2+y^2) ={ 1/[ 1+(y/x)^2] } . [ (x.dy/dx - y )/x^2 ]
= (x.dy/dx - y )/(x^2+y^2)
x+ y.dy/dx = x.dy/dx - y
(x-y).dy/dx = x+y
dy/dx = (x+y)/(x-y)
ln√(x^2+y^2) = arctan(y/x)
(1/2)ln(x^2+y^2) = arctan(y/x)
两边求导
(x + y.dy/dx)/(x^2+y^2) ={ 1/[ 1+(y/x)^2] } . [ (x.dy/dx - y )/x^2 ]
= (x.dy/dx - y )/(x^2+y^2)
x+ y.dy/dx = x.dy/dx - y
(x-y).dy/dx = x+y
dy/dx = (x+y)/(x-y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询