求微分方程y″+ y=0的通解
7个回答
展开全部
常系数线性齐次微分方程y"+y=0的通解为:y=(C1+C2 x)ex
故 r1=r2=1为其特征方程的重根,且其特征方程为 (r-1)2=r2-2r+1
故 a=-2,b=1
对于非齐次微分方程为y″-2y′+y=x
设其特解为 y*=Ax+B
代入y″-2y′+y=x 可得,0-2A+(Ax+B)=x
整理可得(A-1)x+(B-2A)=0
所以 A=1,B=2
所以特解为 y*=x+2
通解为 y=(C1+C2 x)ex +x+2
将y(0)=2,y(0)=0 代入可得
C1=0,C2=-1。
故所求特解为 y=-xex+x+2
故答案为-xex+x+2
扩展资料:
形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。
一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。
火丰科技
2024-11-13 广告
2024-11-13 广告
致力于从事惯性测量、卫星导航等产品的研发、生产的高新技术企业。公司旗下投资多条自动化生产线分别分布于西安、深圳、珠海等地,其中包括光纤陀螺、MEMS惯导、石英加速度计、电子对抗通信产品生产线,拥有中国先进的惯性导航产品及电子对抗产品生产条件...
点击进入详情页
本回答由火丰科技提供
展开全部
∵y''+y=0的特征方程是r²+1=0,则r=±i
∴齐次方程y''+y=0的通解是y=C1sinx+C2cosx
(C1,C2是积分常数)
∴齐次方程y''+y=0的通解是y=C1sinx+C2cosx
(C1,C2是积分常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
两边积分得,y+(y^2)/2=k,(k为任意常数)
即(y^2)/2+y-k=0
解得y=-1±根号(1+2k)
所以通解为y=k
即(y^2)/2+y-k=0
解得y=-1±根号(1+2k)
所以通解为y=k
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询