展开全部
y=√2(sin2x+cos2x)
=2*√2/2(sin2x+cos2x)
=2*(sin2x *√2/2 +cos2x *√2/2)
=2*(sin2x *cos(π/4) +cos2x*sin(π/4))
=2sin(2x+π/4)
=2sin[2(x+π/8)]
根据左加右减,y=2sin2x变为上述形状
是向左平移π/8,所以B正确
=2*√2/2(sin2x+cos2x)
=2*(sin2x *√2/2 +cos2x *√2/2)
=2*(sin2x *cos(π/4) +cos2x*sin(π/4))
=2sin(2x+π/4)
=2sin[2(x+π/8)]
根据左加右减,y=2sin2x变为上述形状
是向左平移π/8,所以B正确
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解,y=√2(sin2x+cos2x)=2sin(2x+π/4)
则y=2sin(2x)向左移π/8,得y=2sin(2(x+π/8))
=2sin(2x+π/4)
选B
则y=2sin(2x)向左移π/8,得y=2sin(2(x+π/8))
=2sin(2x+π/4)
选B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询