如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°。△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于
1个回答
展开全部
(3)∠CDF=15°,
详解如下:由(2),得GM=AM,GK=CK,
∵MK^2+CK^2=AM^2,
∴MK^2+GK^2=GM^2,
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴∠CKG=90°,∠FKC=1/2∠CKG=45°,
又有(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
∴
MK/GM=
(√3)/2,
∴
MK/AM=
(√3)/2.
详解如下:由(2),得GM=AM,GK=CK,
∵MK^2+CK^2=AM^2,
∴MK^2+GK^2=GM^2,
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴∠CKG=90°,∠FKC=1/2∠CKG=45°,
又有(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
∴
MK/GM=
(√3)/2,
∴
MK/AM=
(√3)/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询