证明函数f(x)=x/x+1在(-1,正无穷)单调递增
2个回答
展开全部
证明设x1.x2属于(-1,
正无穷
),且x1<x2
即f(x1)-f(x2)
=x1/(x1+1)-x2/(x2+1)
=x1(x2+1)/(x1+1)(x2+1)-x2(x1+1)/(x2+1)(x1+1)
=[x1(x2+1)-x2(x1+1)]/(x2+1)(x1+1)
=(x1-x2)/(x2+1)(x1+1)
由-1<x1<x2
即x1-x2<0,(x2+1)>0,(x1+1)>0
即(x1-x2)/(x2+1)(x1+1)<0,
即f(x1)-f(x2)<0
即f(x1)<f(x2)
即f(x)=x/x+1在(-1,正无穷)单调递增
正无穷
),且x1<x2
即f(x1)-f(x2)
=x1/(x1+1)-x2/(x2+1)
=x1(x2+1)/(x1+1)(x2+1)-x2(x1+1)/(x2+1)(x1+1)
=[x1(x2+1)-x2(x1+1)]/(x2+1)(x1+1)
=(x1-x2)/(x2+1)(x1+1)
由-1<x1<x2
即x1-x2<0,(x2+1)>0,(x1+1)>0
即(x1-x2)/(x2+1)(x1+1)<0,
即f(x1)-f(x2)<0
即f(x1)<f(x2)
即f(x)=x/x+1在(-1,正无穷)单调递增
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询