已知f(1-x/1+x)=1-x²/1+x²,求f(x)的解析式
1个回答
展开全部
换元法:令t=(1-x)/(1+x)
(1+x)t=1-x
tx+x=1-t
x=(1-t)/(1+t)
f(t)
=(1-x²)/(1+x²)
=[1-(1-t)²/(1+t)²]/[1+(1-t)²/(1+t)²]
=[(1+t)²-(1-t)²]/[(1+t)²+(1-t)²]
=[(1+2t+t²)-(1-2t+t²)]/[(1+2t+t²)+(1-2t+t²)]
=(4t)/(2+2t²)
=2t/(1+t²)
将t换回x,即得
f(x)=2x/(1+x²)。
希望对你有所帮助,望采纳,谢谢。
(1+x)t=1-x
tx+x=1-t
x=(1-t)/(1+t)
f(t)
=(1-x²)/(1+x²)
=[1-(1-t)²/(1+t)²]/[1+(1-t)²/(1+t)²]
=[(1+t)²-(1-t)²]/[(1+t)²+(1-t)²]
=[(1+2t+t²)-(1-2t+t²)]/[(1+2t+t²)+(1-2t+t²)]
=(4t)/(2+2t²)
=2t/(1+t²)
将t换回x,即得
f(x)=2x/(1+x²)。
希望对你有所帮助,望采纳,谢谢。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询