微分方程,用通解公式,要详细解答过程!

 我来答
创作者TUUDjgYBN2
2019-03-01 · TA获得超过3771个赞
知道大有可为答主
回答量:3094
采纳率:31%
帮助的人:130万
展开全部
解:设y'-y/x=0,有dy/y=dx/x,两边积分有y=x。再设方程的通解为y=xu(x),则y'=u(x)+u'(x)x,代入原方程,经整理有,u'(x)=(-2lnx)/x^2。两边再积分有,u(x)=(2/x)(lnx+1)+C。∴原方程的通解为,y=2(lnx+1)+cx,其中c为常数。供参考。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式