1个回答
展开全部
证明:AB=AC,角BAC=90度,则∠ACB=45°.
过点C作CA的垂线,交AF的延长线于M.则∠MCF=∠DCF=45°.
∠ABD+∠BAE=90°;∠CAM+∠BAE=90°.则∠ABD=∠CAM;
又AB=AC;∠BAD=∠ACM=90°.则⊿BAD≌⊿ACM(ASA),得∠ADB=∠M;AD=CM.
又AD=DC,则CM=DC.
又CF=CF;∠DCF=∠MCF.故⊿DCF≌⊿MCF(SAS),得∠CDF=∠M.
所以,∠ADB=∠CDF.(等量代换)
过点C作CA的垂线,交AF的延长线于M.则∠MCF=∠DCF=45°.
∠ABD+∠BAE=90°;∠CAM+∠BAE=90°.则∠ABD=∠CAM;
又AB=AC;∠BAD=∠ACM=90°.则⊿BAD≌⊿ACM(ASA),得∠ADB=∠M;AD=CM.
又AD=DC,则CM=DC.
又CF=CF;∠DCF=∠MCF.故⊿DCF≌⊿MCF(SAS),得∠CDF=∠M.
所以,∠ADB=∠CDF.(等量代换)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询