求助一道高等数学三重积分的题目?
2个回答
展开全部
由对称性, 所求体积是第一卦限部分的 8 倍。
V = 8V1 = 16∫∫∫<D1>√(1-x^2)dxdy = 16∫<0, π/4>dt∫<0, 1>√[1-(rcost)^2]rdr
= -8∫<0, π/4>dt[1/(cost)^2]∫<0, 1>√[1-(rcost)^2]d[1-(rcost)^2]
= -8∫<0, π/4>dt[1/(cost)^2] (2/3)[{1-(rcost)^2}^(3/2)]∫<0, 1>
= (16/3)∫<0, π/4>dt[1/(cost)^2][1-(sint)^3]
= (16/3)∫<0, π/4>[(sect)^2-(sint)^3/(cost)^2]dt
= (16/3)[tant]<0, π/4> + (16/3)∫<0, π/4> [1-(cost)^2]/(cost)^2]dcost
= 16/3 + (16/3)∫<0, π/4> [1/(cost)^2 - 1]dcost
= 16/3 + (16/3)[-1/cost - cost]<0, π/4>
= 16/3 + (16/3)(-√2-√2/2+1+1)
= 16/3 + (16/3)(2-3√2/2) = 16 - 8√2 = 8(2-√2)
V = 8V1 = 16∫∫∫<D1>√(1-x^2)dxdy = 16∫<0, π/4>dt∫<0, 1>√[1-(rcost)^2]rdr
= -8∫<0, π/4>dt[1/(cost)^2]∫<0, 1>√[1-(rcost)^2]d[1-(rcost)^2]
= -8∫<0, π/4>dt[1/(cost)^2] (2/3)[{1-(rcost)^2}^(3/2)]∫<0, 1>
= (16/3)∫<0, π/4>dt[1/(cost)^2][1-(sint)^3]
= (16/3)∫<0, π/4>[(sect)^2-(sint)^3/(cost)^2]dt
= (16/3)[tant]<0, π/4> + (16/3)∫<0, π/4> [1-(cost)^2]/(cost)^2]dcost
= 16/3 + (16/3)∫<0, π/4> [1/(cost)^2 - 1]dcost
= 16/3 + (16/3)[-1/cost - cost]<0, π/4>
= 16/3 + (16/3)(-√2-√2/2+1+1)
= 16/3 + (16/3)(2-3√2/2) = 16 - 8√2 = 8(2-√2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询