求微分方程Y”-4Y’+3=0满足初始条件Y(0)=1,Y’(0)=5的特解

 我来答
罗丰弥智伟
2019-06-06 · TA获得超过1114个赞
知道小有建树答主
回答量:1784
采纳率:100%
帮助的人:8.5万
展开全部
∵齐次方程y''-4y'+3=0的特征方程是r²-4r+3=0,则特征根是r1=1,r2=3
∴齐次方程y''-4y'+3=0的通解是y=C1e^x+C2e^(3x) (C1,C2是积分常数)
∵y(0)=1,y’(0)=5
∴C1+C2=1,C1+3C2=5
==>C1=-1,C2=2
故满足初始条件的特解是 y=2e^(3x)-e^x.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式