求极限,最好有详细过程,非常感谢
擦,几乎都忘了,算了我几个小时,还要查资料。。。。
limn^2{[1+1/(n+1)]^(n+1)-(1+1/n)^n}
对括号内:
[1+1/(n+1)]^(n+1)-(1+1/n)^n
=e^{(n+1)ln[1+1/(n+1)]}-e^nln(1+1/n)
=e^nln(1+1/n)*{e^{[(n+1)ln(1+1/(n+1))]-nln(1+1/n)}-1}
有e^x的展开式e^x=1+x+o(x^2)
原式 =lim(n-∞)n^2*[1+1/(1+n)]^n*{(n+1)ln[1+1/(n+1)]-nln(1+1/n)}
=elim(n-∞)n^2{(n+1)ln[1+1/(n+1)]-nln(1+1/n)}
t=1/n =elim(t-0) [(1+1/t)ln(1+2t)/(1+t)-(1/t)ln(1+t)]/t^2
=elim(t-0) [(1+t)ln(1+2t)/(1+t)-ln(1+t)]/t^3
=elim(t-0) [(ln(1+2t)-2ln(1+t)+tln(1+2t)-tln(1+t)]/t^3
洛必达=elim(t-0).....
洛必达=elim(t-0).....
=elim(t-0)(4t+3)/[6(1+t)^2(1+2t)^2]
=e/2
中间两次洛必达,打字太麻烦,手写了拍个照看能不能传上来