求不定积分 ∫√(1+cosx)/sinxdx
1个回答
展开全部
令u=1+cosx du=-sinxdx
∫√(1+cosx)/sinxdx
=∫du/(u-2)√u
再令s=√u ds=du/2√u
∫du/(u-2)√u
=2∫ds/(s^2-2)=1/√2∫ 1/(s-√2) -1/(s+√2) ds
=1/√2ln|(s-√2)/(s+√2)|+C
∫√(1+cosx)/sinxdx=1/√2ln|(√(1+cosx)-√2)/(√(1+cosx)+√2)|+C
∫√(1+cosx)/sinxdx
=∫du/(u-2)√u
再令s=√u ds=du/2√u
∫du/(u-2)√u
=2∫ds/(s^2-2)=1/√2∫ 1/(s-√2) -1/(s+√2) ds
=1/√2ln|(s-√2)/(s+√2)|+C
∫√(1+cosx)/sinxdx=1/√2ln|(√(1+cosx)-√2)/(√(1+cosx)+√2)|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询