1个回答
展开全部
根据泰勒展开
e^(x^2)=1+x^2+(x^4)/2+o(x^4)
cosx=1-(x^2)/2+(x^4)/24+o(x^4)
所以lim(x->0) [e^(x^2)+cosx-2]/(x^4)
=lim(x->0) [1+x^2+(x^4)/2+o(x^4)+1-(x^2)/2+(x^4)/24+o(x^4)-2]/(x^4)
=lim(x->0) [(x^2)/2+(13/24)*(x^4)+o(x^4)]/(x^4)
=lim(x->0) [1/(2x^2)+13/24+o(x^4)/(x^4)]
=+∞
e^(x^2)=1+x^2+(x^4)/2+o(x^4)
cosx=1-(x^2)/2+(x^4)/24+o(x^4)
所以lim(x->0) [e^(x^2)+cosx-2]/(x^4)
=lim(x->0) [1+x^2+(x^4)/2+o(x^4)+1-(x^2)/2+(x^4)/24+o(x^4)-2]/(x^4)
=lim(x->0) [(x^2)/2+(13/24)*(x^4)+o(x^4)]/(x^4)
=lim(x->0) [1/(2x^2)+13/24+o(x^4)/(x^4)]
=+∞
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询