运筹学在生活中的实际应用
3个回答
展开全部
(1)规划论。数学规划主要包括线性规划、非线性规划、整数规划、目标规划、和动态规划。研究内容与生产活动中有限资源的分配有关,在组织生产的经营管理活动中,具有极为重要的地位和作用。它主要解决两个方面的问题。一是对于给定的人力、物力、财力,怎样才能 发挥它们的最大效益;二是对于给定的任务,怎样才能用最少的人力、物力和财力去完成它。这两个方面有一个共同特点.即在给定的条件下,按照某一衡量指标来寻找最优方案,求解约束
--3-- 条件下目标函数的极值(极大值或极小值)问题。具体来讲,线性规划可以解决生产过程的优化、物流方面的运输以及资源的配置问题等;整数线性规划可以 求解企业的投资决策问题、旅行售货员问题等;而动态规划所研究的对象是多阶段决策问题,主要用来解决最短路线问 题、多阶段资源分配问题、生产和存储控制问题及设备更新问题等。根据他研究问题的特点,它主要用于总体的生产,存储和劳动力的配合问题等进行合理的统计规划,是获得最大的收益。例如某家制造公司利用了线性规划的科学理论对生产的成本和劳动力的分配,最后是的企业在制造费用上节省了10%的生产费用。此外还可以用于生产作业计划,日程表的编排,还有在合理下料,配料问题,无聊问题等方面的应用。
(2)决策论。所谓决策就是根据客观可能性,借助一定的理论,方法和工具,分析问题提出可行方案以及研究从多种可供选择的行动 方案中选择最优方案的方法。决策问题通常分为三种类型:确定型决策、风险型决策和不确定型决策.针对不同的情形套用相应的模型便可求解。经济领域中利用决策论解决的问题有:企业管理者制定投资、生产计划、物资调运计划的问题。新产品的销路问题,一种新股票发行的变化问题等。现代的财政与会计分析也多会用到决策分析。
(3)运输问题。运输问题在研究某些问题是具有其他的方法无法比拟的便利性,当我们遇到一些大宗的物资调运时如煤,铁,木材等,如何制定合理的调运方案,将这些物资运到各个消费地点而且总运费要达到最小。除了这些还有一些客运问题,如空运问题涉及航班和飞机的人员服务时间的安排,为此国际运筹学协会中还专门设立了航空组,专门研究空运问题中的运筹学问题。水运同样有船舶航运计划,港口配置和船到港后的运行安排。而在铁路方面的应用就更加广泛了,如经典的并为大家熟知的运输问题,再妇最长(短)路问题、阿络流问题(最小费用商品流问题、多商品流问题)等,以及旅行商TSP问题.这些问题都非常容易在交通运输领域找到广泛的应用实例。
(4)图论。线性规划是运筹学中理论比较完善成熟、方法比较方便有效的一个分支,但是用来解决某些大型系统的问题仍 能力,具有描述问题直观,模型易于计算实现的特点,能很方便地将一些复杂的问题分解或转化为可能求解的子问题。网络在经济领域中主要用来解决生产组织、计划管理中诸如最短路径、最小连接、最小费用流问题以及最优分派问题等。另外,物流方面的运输、配送
--4-- 问题,工厂、仓库等的选址问题等,也可运用网络分析的知识辅助决策者进行最优安排。总之,特别是在计划和安排大型的复杂工程时,网络技术是重要的工具
--3-- 条件下目标函数的极值(极大值或极小值)问题。具体来讲,线性规划可以解决生产过程的优化、物流方面的运输以及资源的配置问题等;整数线性规划可以 求解企业的投资决策问题、旅行售货员问题等;而动态规划所研究的对象是多阶段决策问题,主要用来解决最短路线问 题、多阶段资源分配问题、生产和存储控制问题及设备更新问题等。根据他研究问题的特点,它主要用于总体的生产,存储和劳动力的配合问题等进行合理的统计规划,是获得最大的收益。例如某家制造公司利用了线性规划的科学理论对生产的成本和劳动力的分配,最后是的企业在制造费用上节省了10%的生产费用。此外还可以用于生产作业计划,日程表的编排,还有在合理下料,配料问题,无聊问题等方面的应用。
(2)决策论。所谓决策就是根据客观可能性,借助一定的理论,方法和工具,分析问题提出可行方案以及研究从多种可供选择的行动 方案中选择最优方案的方法。决策问题通常分为三种类型:确定型决策、风险型决策和不确定型决策.针对不同的情形套用相应的模型便可求解。经济领域中利用决策论解决的问题有:企业管理者制定投资、生产计划、物资调运计划的问题。新产品的销路问题,一种新股票发行的变化问题等。现代的财政与会计分析也多会用到决策分析。
(3)运输问题。运输问题在研究某些问题是具有其他的方法无法比拟的便利性,当我们遇到一些大宗的物资调运时如煤,铁,木材等,如何制定合理的调运方案,将这些物资运到各个消费地点而且总运费要达到最小。除了这些还有一些客运问题,如空运问题涉及航班和飞机的人员服务时间的安排,为此国际运筹学协会中还专门设立了航空组,专门研究空运问题中的运筹学问题。水运同样有船舶航运计划,港口配置和船到港后的运行安排。而在铁路方面的应用就更加广泛了,如经典的并为大家熟知的运输问题,再妇最长(短)路问题、阿络流问题(最小费用商品流问题、多商品流问题)等,以及旅行商TSP问题.这些问题都非常容易在交通运输领域找到广泛的应用实例。
(4)图论。线性规划是运筹学中理论比较完善成熟、方法比较方便有效的一个分支,但是用来解决某些大型系统的问题仍 能力,具有描述问题直观,模型易于计算实现的特点,能很方便地将一些复杂的问题分解或转化为可能求解的子问题。网络在经济领域中主要用来解决生产组织、计划管理中诸如最短路径、最小连接、最小费用流问题以及最优分派问题等。另外,物流方面的运输、配送
--4-- 问题,工厂、仓库等的选址问题等,也可运用网络分析的知识辅助决策者进行最优安排。总之,特别是在计划和安排大型的复杂工程时,网络技术是重要的工具
深圳市源远水利设计有限公司
2018-06-11 广告
2018-06-11 广告
水土流失是指土壤在水的浸润和冲击作用下,其结构发生破碎和松散,随水流动而散失的现象。在水力、风力、冻融和重力等外营力作用下,使陆地表层的土壤和土壤母质等发生破坏、磨损、分散、搬运和沉积的过程。 水土流失多发生在山区、丘陵区。地貌起伏不平、陡...
点击进入详情页
本回答由深圳市源远水利设计有限公司提供
展开全部
随着经济的快速发展和社会的进步,社会各行各业之间的竞争日益激烈,尤其表现为对资源的争夺。
因此,在有限的资源下获得最大的利益是每个竞争者所考虑的问题,这也是经济学和运筹学所着重解决的问题。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。
作为一门实用性很强的学科,运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。正因为如此,运筹学在企业决策领域中有着广泛的应用。
众所周知,运筹学研究的根本目的在于对资源进行最优化配置,用数学的理论与方法指导社会管理,提高生产效率,创造经济效益。而企业投资的根本目的也是在资源的优化配置和有限资源的有效使用的基础上,达到既定目标,实现企业利润最大化。
然而,随着市场竞争的日趋激烈,决策是否有效对于企业生存发展的影响愈来愈大。正确的决策可以使企业获利并促进企业的发展,而错误的或者无效的决策只能使企业无利可获甚至亏损,阻碍企业的发展。而运筹学、经济学、博弈论等决策性的科学可以引导投资者选择最佳投资组合策略,为决策者在投资决策过程中提供一些有价值的思路。用来解决人们用纯数学方法或者现实实验无法解决的问题,对企业正确决策的形成有着积极地促进作用。
因此,在有限的资源下获得最大的利益是每个竞争者所考虑的问题,这也是经济学和运筹学所着重解决的问题。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。
作为一门实用性很强的学科,运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。正因为如此,运筹学在企业决策领域中有着广泛的应用。
众所周知,运筹学研究的根本目的在于对资源进行最优化配置,用数学的理论与方法指导社会管理,提高生产效率,创造经济效益。而企业投资的根本目的也是在资源的优化配置和有限资源的有效使用的基础上,达到既定目标,实现企业利润最大化。
然而,随着市场竞争的日趋激烈,决策是否有效对于企业生存发展的影响愈来愈大。正确的决策可以使企业获利并促进企业的发展,而错误的或者无效的决策只能使企业无利可获甚至亏损,阻碍企业的发展。而运筹学、经济学、博弈论等决策性的科学可以引导投资者选择最佳投资组合策略,为决策者在投资决策过程中提供一些有价值的思路。用来解决人们用纯数学方法或者现实实验无法解决的问题,对企业正确决策的形成有着积极地促进作用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
运筹学是一门应用科学,它广泛的应用现有的科学技术知识和数学方法,解决实际中提出的专门问题,为决策者选择最优决策提供定量依据。一般认为它有以下分支:线性规划、整数规划、动态规划、图与网络分析、排队论、存贮论、对策论、决策分析、多目标规划及启发式方法等。我们本学期主要学习了线性规划和整数规划以及目标规划。运筹学主要特点包括:(1)强调科学性和定量分析;(2)解决问题的系统思想;(3)运用多学科知识解决问题。而解决实际问题遵循的一定科学步骤为:(1)明确问题;(2)建立模型;(3)模型求解;(4)解的检验;(5)解的实施。
二、用运筹学方法解决实际问题1.单纯形法。
1.1简介。单纯形法属于线性规划。特点是理论完善、方法简单、应用广泛,是任何运筹学分支首要阐明的基本知识。
1.2应用。可以用单纯形法解决生产计划问题。
1.3案例。例如,某工厂拥有,A 、B 、C 三种设备,生产甲、乙、丙、丁四种产品。每件产品在生产中需要占有的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如表所示:
二、用运筹学方法解决实际问题1.单纯形法。
1.1简介。单纯形法属于线性规划。特点是理论完善、方法简单、应用广泛,是任何运筹学分支首要阐明的基本知识。
1.2应用。可以用单纯形法解决生产计划问题。
1.3案例。例如,某工厂拥有,A 、B 、C 三种设备,生产甲、乙、丙、丁四种产品。每件产品在生产中需要占有的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如表所示:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |