1个回答
展开全部
u=(x+1)f'(x)
u'=(x+1)f''(x) +f'(x)
v=(x+1)f(x)
v'=(x+1)f'(x) +f(x)
z=∫(0->x) f(t) dt
z'=f(x)
(x+1)f'(x) +(x+1)f(x) -∫(0->x) f(t) dt =0
两边求导
[(x+1)f''(x) +f'(x) ]+[(x+1)f'(x) +f(x)] -f(x) =0
(x+1)f''(x) +(x+2)f'(x) =0
f''(x) +[1+ 1/(x+1)] f'(x) =0
两边乘 (x+1)e^(x)
原因: p(x) =1+ 1/(x+1), e^[∫ p(x) dx] = (x+1)e^(x)
(x+1)e^(x). { f''(x) +[1+1/(x+1)] f'(x) } =0
d/dx { f'(x) .(x+1)e^x } =0
f'(x) .(x+1)e^x =C
f'(x) = C e^(-x)/(x+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询