椭圆的焦点三角形问题

F1,F2是椭圆x^2/b^2+y^2/b^2=1(a>b>0)的焦点,PQ是过F1的一条弦,求三角形PQF2面积的最大值... F1,F2是椭圆x^2/b^2+y^2/b^2=1(a>b>0)的焦点, PQ是过F1的一条弦,求三角形PQF2面积的最大值 展开
 我来答
嬴珊詹天骄
2020-06-12 · TA获得超过3762个赞
知道大有可为答主
回答量:3136
采纳率:27%
帮助的人:186万
展开全部
F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的焦点,PQ是过F1的一条弦,求三角形PQF2面积的最大值
【解】
△PQF2面积=△QF1F2面积+△QF1F2面积
△QF1F2与△QF1F2底边均为F1F2=2c,
三角形PQF2的面积
=三角形PF1F2的面积+三角形QF1F2的面积
=1/2
*
|y2-y1|
*
2c
=c*|y2-y1|
之后是联立直线方程与椭圆方程,利用韦达定理表示出|y2-y1|进行分析即可。
请你看下面的一个具体例题,会对你有所启发的。
设点F1是x^2/3+y^2/2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB的面积的最大值.
【解】
a²=3,b²=2
c²=3-2=1
c=1
所以F1F2=2c=2
假设A在x上方,B在下方
直线过(1,0)
设直线是x-1=m(y-0)
x=my+1
代入2x²+3y²=6
(2m²+3)y²+4my-4=0
y1+y2=-4m/(2m²+3),y1y2=-4/(2m²+3)
三角形F1AB=三角形F1F2A+F1F2B
他们底边都是F1F2=2
则面积和最小就是高的和最小

|y1|+|y2|
因为AB在x轴两侧,所以一正一负
所以|y1|+|y2|=|y1-y2|
(y1-y2)²=(y1+y2)²-4y1y2=16m²/(2m²+3)²+16/(2m²+3)
|y1-y2|=4√[m²+(2m²+3)]/(2m²+3)
=4√3*√(m²+1)]/(2m²+3)
令√(m²+1)=p
2m²+3=2p²+1
且p>=1
则p/(2p²+1)=1/(2p+1/p)
分母是对勾函数
所以p=√(1/2)=√2/2时最小
这里p>=1,所以p=1,2p+1/p最小=3
此时p/(2p²+1)最大=1/3
所以|y1-y2|最大=4√3*1/3
所以最大值=2*4√3/3÷2=4√3/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式