3个回答
展开全部
在等比数列{an}中,
a1+am=66,a2am-1=128,前m项和Sm=126
a1am=a2am-1=128
a1+am=66,am=66-a1带入上式得
a1(66-a1)=128
a1^2-66a1+128=0 再分解因式
(a1-2)(a1-64)=0
看看你能继续么,试试吧
a1+am=66,a2am-1=128,前m项和Sm=126
a1am=a2am-1=128
a1+am=66,am=66-a1带入上式得
a1(66-a1)=128
a1^2-66a1+128=0 再分解因式
(a1-2)(a1-64)=0
看看你能继续么,试试吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据题意得到:
A1+A1*q^(m-1)=66
A1*q*A1*q^(m-2)=A1*A1*q^(m-1)=128
所以A1=2,A1*q^(m-1)=64,或A1=64,A1*q^(m-1)=2,
因为前m项和Sm=126,所以A1(1-q^m)/(1-q)=126=2(1-32q)/(1-q)或(64-2q)/(1-q)
所以q=2或1/2,m=6
A1+A1*q^(m-1)=66
A1*q*A1*q^(m-2)=A1*A1*q^(m-1)=128
所以A1=2,A1*q^(m-1)=64,或A1=64,A1*q^(m-1)=2,
因为前m项和Sm=126,所以A1(1-q^m)/(1-q)=126=2(1-32q)/(1-q)或(64-2q)/(1-q)
所以q=2或1/2,m=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询