均值滤波
1个回答
展开全部
均值滤波是指用当前像素点周围N·N个像素值的均值来代替当前像素值。使用该方法遍历处理图像内的每一个像素点,即可完成整幅图像的均值滤波。
例如,希望对图7-7中位于第5行第5列的像素点进行均值滤波。
根据上述运算,针对每一个像素点,都是与一个内部值均为1/25的5×5矩阵相乘,得到均值滤波的计算结果,如图7-11所示。
将使用的5×5矩阵一般化,可以得到如图7-12所示的结果。
式中,M和N分别对应高度和宽度。一般情况下,M和N是相等的,例如比较常用的3×3、5×5、7×7等。如果M和N的值越大,参与运算的像素点数量就越多,图像失真越严重。
在OpenCV中,实现均值滤波的函数是cv2.blur(),其语法格式为:
式中:
通常情况下,使用均值滤波函数时,对于锚点anchor和边界样式borderType,直接采用其默认值即可。
【例7.2】针对噪声图像,使用不同大小的卷积核对其进行均值滤波,并显示均值滤波的情况。
从图中可以看出,使用5×5的卷积核进行滤波处理时,图像的失真不明显;而使用30×30的卷积核进行滤波处理时,图像的失真情况较明显。
卷积核越大,参与到均值运算中的像素就会越多,即当前点计算的是更多点的像素值的平均值。因此,卷积核越大,去噪效果越好,当然花费的计算时间也会越长,同时让图像失真越严重。在实际处理中,要在失真和去噪效果之间取得平衡,选取合适大小的卷积核。
例如,希望对图7-7中位于第5行第5列的像素点进行均值滤波。
根据上述运算,针对每一个像素点,都是与一个内部值均为1/25的5×5矩阵相乘,得到均值滤波的计算结果,如图7-11所示。
将使用的5×5矩阵一般化,可以得到如图7-12所示的结果。
式中,M和N分别对应高度和宽度。一般情况下,M和N是相等的,例如比较常用的3×3、5×5、7×7等。如果M和N的值越大,参与运算的像素点数量就越多,图像失真越严重。
在OpenCV中,实现均值滤波的函数是cv2.blur(),其语法格式为:
式中:
通常情况下,使用均值滤波函数时,对于锚点anchor和边界样式borderType,直接采用其默认值即可。
【例7.2】针对噪声图像,使用不同大小的卷积核对其进行均值滤波,并显示均值滤波的情况。
从图中可以看出,使用5×5的卷积核进行滤波处理时,图像的失真不明显;而使用30×30的卷积核进行滤波处理时,图像的失真情况较明显。
卷积核越大,参与到均值运算中的像素就会越多,即当前点计算的是更多点的像素值的平均值。因此,卷积核越大,去噪效果越好,当然花费的计算时间也会越长,同时让图像失真越严重。在实际处理中,要在失真和去噪效果之间取得平衡,选取合适大小的卷积核。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询