点o是三角形ABC内任意一点,求证:AB+AC>Ob+OC.

 我来答
户如乐9318
2022-07-08 · TA获得超过6606个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:134万
展开全部
证明AB+BC>OB+OC
证:
延长BO交AC于D
因为AB+AD>BD=OB+OD,
即纤神AB+AD>OB+OD,
又因谈姿为OD+DC>OC
上述两含竖绝不等式两边相加得:
所以AB+AD+OD+DC>OC+OB+OD,
消去OD得:AB+AD+DC>OC+OB
所以
AB+AC>OB+OC
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式