二元二次方程基本公式
展开全部
二元二次方程基本公式为ax2+bxy+cy2+dx+ey+f=0。
二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零。
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。
由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
1、有两组相等的实数解。
2、有两组不相等的实数解;
3、没有实数解。解:将②代入①,整理得二次方程③的判别式。
4、当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。
5、当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。
6、当a>2时,方程③没有实数根,因而原方程没有实数解。
“代入消元法”和“加减消元法”解方程组:
代入消元法是将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。这种解方程组的方法叫做代入消元法,简称代入法。
加减消元法是当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。
二元二次方程是指含有两个未知数,并且含有未知数的项的最高次数是二的整式方程,叫做二元二次方程,且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零。
二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。
由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。
1、有两组相等的实数解。
2、有两组不相等的实数解;
3、没有实数解。解:将②代入①,整理得二次方程③的判别式。
4、当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。
5、当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。
6、当a>2时,方程③没有实数根,因而原方程没有实数解。
“代入消元法”和“加减消元法”解方程组:
代入消元法是将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解。这种解方程组的方法叫做代入消元法,简称代入法。
加减消元法是当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询