正方形AEFG的边AE AG分别在正方形ABCD的边AB AD上
正方形AEFG的边AEAG分别在正方形ABCD的边ABAD上,O为正方形AEFG的中心,M为BE中点(1)求BM/OB(2)将正方形绕A旋转180求BM/OB...
正方形AEFG的边AE AG分别在正方形ABCD的边AB AD上,O为正方形AEFG的中心,M为BE中点
(1)求BM/OB
(2)将正方形绕A旋转180 求BM/OB 展开
(1)求BM/OB
(2)将正方形绕A旋转180 求BM/OB 展开
2个回答
展开全部
(1) 过O作AB垂线交AB与H点,过M点分别作AB和BC的垂线,交AB、BC于P、N
令AE=b,AB=a
则在RtΔOHB中,OH=b/2,GB=a-b/2
∴ BO=√[(a-b/2)^2+(b^2)/4]=√[a^2-ab+(b^2)/2]
在 ΔRtΔBMN中,MN=(a-b)/2,BN=a/2
∴ BM=√{(a/2)^2+[(a-b)/2]^2}=√{[(a^2-ab+(b^2)/2)]/2}
所以,BM/OB=1:√2
(2) 过O作OH⊥BE,过M作MP⊥AB,MN⊥BC
令AE=b,AB=a
则在RtΔOHB中,OH=b/2,BH=a+b/2
∴ BO=√[(a+b/2)^2+(b^2)/4]=√[a^2+ab+(b^2)/4+(b^2)/2]
=√[a^2+ab+(b^2)/2]
在 ΔRtΔBMN中,MN=(a+b)/2,BN=a/2
∴ BM=√{(a/2)^2+[(a+b)/2]^2}=√{[(a^2+ab+(b^2)/2)]/2}
所以,BM/OB=1:√2
令AE=b,AB=a
则在RtΔOHB中,OH=b/2,GB=a-b/2
∴ BO=√[(a-b/2)^2+(b^2)/4]=√[a^2-ab+(b^2)/2]
在 ΔRtΔBMN中,MN=(a-b)/2,BN=a/2
∴ BM=√{(a/2)^2+[(a-b)/2]^2}=√{[(a^2-ab+(b^2)/2)]/2}
所以,BM/OB=1:√2
(2) 过O作OH⊥BE,过M作MP⊥AB,MN⊥BC
令AE=b,AB=a
则在RtΔOHB中,OH=b/2,BH=a+b/2
∴ BO=√[(a+b/2)^2+(b^2)/4]=√[a^2+ab+(b^2)/4+(b^2)/2]
=√[a^2+ab+(b^2)/2]
在 ΔRtΔBMN中,MN=(a+b)/2,BN=a/2
∴ BM=√{(a/2)^2+[(a+b)/2]^2}=√{[(a^2+ab+(b^2)/2)]/2}
所以,BM/OB=1:√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询