常见算法1——递归算法
1个回答
展开全部
递配昌旅归算法就是通过自身不断反复调用自身以解决问题,其中最经典的也就是汉诺达和斐波纳契数列的问题了。
1.汉诺塔问题
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,一次只移动一片,不管在哪根针上,小片必在大片上面。当所有的金培凳片都从梵天穿好的那根针上移到另外一概针上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽。
分析:挪到C的金片也是从下到上由大到小的顺序排列,那么A之剩下最下面的金片移动到C的时候,C上面是不可以有金片的,这个时候A上面只有第n个金片,B上面有n-1个金片,C上面没有金片,然后这个情况就和刚开始情况相同了,只不过A和B颠倒了位置而已。
(1)n-1个金片从A通过C移动到B,n-1个金片从A通过C移动到B也是不断调用自身逐步缩小范围。通过递归调用后,就完成了A上面仅剩下最大的金片,C上面没有金片,B上面有n-1个金片。
(2)最大的那个金片从A移动到C
(3)调用自身重复刚开始的情况,只不过现在有金片的是B,即B通过A把金片移动到C。
2.斐波纳契数列
2.1生兔子问题
古典问题:3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?下面先从小到大分析下这个情况
分析:假设将兔子分为小中大三种,兔子从出生后从第三个月开始每个月就会生出一对兔子,也就是一旦兔子变为大兔子那么他就生了一对兔子
分析情况图如下
很明显这个是一个为斐波那契数列,即如果用f(n)表示第n个月的兔子的对数,那么f(n)=f(n-1)+f(n-2)
2.2走台阶问题
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间复杂度。
分析:假设我们现在还有最后一步要走,可能的情况有哪些?
(1)我们站在第9级上,一步1级后到达顶端;
(2)我们站在第8级上,一步2级后到达顶端;
所以,最后一步可以走1级或者2级,不外乎两种情况。
再假设,已知从0级到9级的走法有M种,从0级到8级的走法有N种,那么从0到10级的走法和M、N有什么关系呢?从0到10级的走法一迅让共是多少种呢?答案是M+N。
所以逐步递归,说白了,这还是个Fibnacci数列。即f(n)=f(n-1)+f(n-2),事件复杂度是2^n
台阶问题的变种:
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.....也可以跳n级。求总共有多少总跳法
分析:用Fib(n)表示跳上n阶台阶的跳法数。如果按照定义,Fib(0)肯定需要为0,否则没有意义。但是我们设定Fib(0) = 1;n = 0是特殊情况,通过下面的分析就会知道,强制令Fib(0) = 1很有好处。因为Fib(0)等于几都不影响我们解题,但是会影响我们下面的分析理解。
当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;
当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = 2;
到这里为止,和普通跳台阶是一样的。
当n = 3 时,有三种跳的方式,第一次跳出一阶后,对应Fib(3-1)种跳法; 第一次跳出二阶后,对应Fib(3-2)种跳法;第一次跳出三阶后,只有这一种跳法。Fib(3) = Fib(2) + Fib(1)+ 1 = Fib(2) + Fib(1) + Fib(0) = 4;
当n = 4时,有四种方式:第一次跳出一阶,对应Fib(4-1)种跳法;第一次跳出二阶,对应Fib(4-2)种跳法;第一次跳出三阶,对应Fib(4-3)种跳法;第一次跳出四阶,只有这一种跳法。所以,Fib(4) = Fib(4-1) + Fib(4-2) + Fib(4-3) + 1 = Fib(4-1) + Fib(4-2) + Fib(4-3) + Fib(4-4) 种跳法。
当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法..........................第一次跳出n阶后,后面还有 Fib(n-n)中跳法。Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+..........+Fib(n-n) = Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-1)。
通过上述分析,我们就得到了通项公式:
因此,有 Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-2)
两式相减得:Fib(n)-Fib(n-1) = Fib(n-1) =====》 Fib(n) = 2*Fib(n-1) n >= 3
这就是我们需要的递推公式:Fib(n) = 2*Fib(n-1) n >= 3
1.汉诺塔问题
在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,一次只移动一片,不管在哪根针上,小片必在大片上面。当所有的金培凳片都从梵天穿好的那根针上移到另外一概针上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽。
分析:挪到C的金片也是从下到上由大到小的顺序排列,那么A之剩下最下面的金片移动到C的时候,C上面是不可以有金片的,这个时候A上面只有第n个金片,B上面有n-1个金片,C上面没有金片,然后这个情况就和刚开始情况相同了,只不过A和B颠倒了位置而已。
(1)n-1个金片从A通过C移动到B,n-1个金片从A通过C移动到B也是不断调用自身逐步缩小范围。通过递归调用后,就完成了A上面仅剩下最大的金片,C上面没有金片,B上面有n-1个金片。
(2)最大的那个金片从A移动到C
(3)调用自身重复刚开始的情况,只不过现在有金片的是B,即B通过A把金片移动到C。
2.斐波纳契数列
2.1生兔子问题
古典问题:3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少?下面先从小到大分析下这个情况
分析:假设将兔子分为小中大三种,兔子从出生后从第三个月开始每个月就会生出一对兔子,也就是一旦兔子变为大兔子那么他就生了一对兔子
分析情况图如下
很明显这个是一个为斐波那契数列,即如果用f(n)表示第n个月的兔子的对数,那么f(n)=f(n-1)+f(n-2)
2.2走台阶问题
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有多少总跳法,并分析算法的时间复杂度。
分析:假设我们现在还有最后一步要走,可能的情况有哪些?
(1)我们站在第9级上,一步1级后到达顶端;
(2)我们站在第8级上,一步2级后到达顶端;
所以,最后一步可以走1级或者2级,不外乎两种情况。
再假设,已知从0级到9级的走法有M种,从0级到8级的走法有N种,那么从0到10级的走法和M、N有什么关系呢?从0到10级的走法一迅让共是多少种呢?答案是M+N。
所以逐步递归,说白了,这还是个Fibnacci数列。即f(n)=f(n-1)+f(n-2),事件复杂度是2^n
台阶问题的变种:
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级.....也可以跳n级。求总共有多少总跳法
分析:用Fib(n)表示跳上n阶台阶的跳法数。如果按照定义,Fib(0)肯定需要为0,否则没有意义。但是我们设定Fib(0) = 1;n = 0是特殊情况,通过下面的分析就会知道,强制令Fib(0) = 1很有好处。因为Fib(0)等于几都不影响我们解题,但是会影响我们下面的分析理解。
当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;
当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = 2;
到这里为止,和普通跳台阶是一样的。
当n = 3 时,有三种跳的方式,第一次跳出一阶后,对应Fib(3-1)种跳法; 第一次跳出二阶后,对应Fib(3-2)种跳法;第一次跳出三阶后,只有这一种跳法。Fib(3) = Fib(2) + Fib(1)+ 1 = Fib(2) + Fib(1) + Fib(0) = 4;
当n = 4时,有四种方式:第一次跳出一阶,对应Fib(4-1)种跳法;第一次跳出二阶,对应Fib(4-2)种跳法;第一次跳出三阶,对应Fib(4-3)种跳法;第一次跳出四阶,只有这一种跳法。所以,Fib(4) = Fib(4-1) + Fib(4-2) + Fib(4-3) + 1 = Fib(4-1) + Fib(4-2) + Fib(4-3) + Fib(4-4) 种跳法。
当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法..........................第一次跳出n阶后,后面还有 Fib(n-n)中跳法。Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+..........+Fib(n-n) = Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-1)。
通过上述分析,我们就得到了通项公式:
因此,有 Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+.......+Fib(n-2)
两式相减得:Fib(n)-Fib(n-1) = Fib(n-1) =====》 Fib(n) = 2*Fib(n-1) n >= 3
这就是我们需要的递推公式:Fib(n) = 2*Fib(n-1) n >= 3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询