函数可微的条件有哪些?

 我来答
社无小事
高能答主

2021-12-13 · 游戏也是生活的态度。
社无小事
采纳数:2168 获赞数:20419

向TA提问 私信TA
展开全部

要证明一个函数可微,必须利用定义,即全增量减去(对x的偏导数乘以x的增量)减去(对y的偏导数乘以Y的增量)之差是距离的高阶无穷小这个必要条件,才能说明可微。

对于一元函数而言,可微必可导,可导必可微,这是充要条件

对于多远函数而言,可微必偏导数存在,但偏导数存在不能推出可微,而是偏导数连续才能推出可微来,这就不是充要条件了。


微分的推导

设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。

AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。

得出: 当△x→0时,△y≈dy。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式