p值统计学意义是什么?
p值统计学意义是:
统计学P值即概率,反映某一事件发生的可能性大小。不同的P数值所表达的含义也是不一样的。统计学根据显著性检验方法所得到的P 值,一般以P < 0.05 为有统计学差异, P<0.01 为有显著统计学差异,P<0.001为有极其显著的统计学差异。
其含义是样本间的差异由抽样误差所致的概率小于0.05 、21130.01、0.001。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ F0.05 > F}或P = P{ F0.01 > F}。
相关信息:
选择一个检验统计量(例如z 统计量或Z 统计量),该统计量的分布在假定的参数取值为真时应该是完全已知的。
从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。
如果P<0.01,说明是较强的判定结果,拒绝假定的参数取值;如果0.01<P值<0.05,说明较弱的判定结果,拒绝假定的参数取值;如果P值>0.05,说明结果更倾向于接受假定的参数取值。
2024-11-30 广告
2023-06-15 · 百度认证:SPSSAU官方账号,优质教育领域创作者
p值统计学意义是什么?
p值,也称显著性值或者Sig.值,用于描述某件事情发生的概率情况,其取值范围是0~1,不包括0和1,通常情况下,一般有三个判断标准一个是0.01、0.05以及0.1。在绝大多数情况下,如果p值小于0.01,则说明至少有99%的把握,如果p值小于0.05(且大于或等于0.01),则说明至少有95%的把握,如果p值小于0.1(且大于或等于0.05),则说明至少有90%的把握。
在统计语言表达上,如果p值小于0.01,则称作0.01水平显著,例如,研究人员分析X对Y是否存在影响关系时,如果X对应的p值为0.00(由于小数位精度要求,展示为0.00),则说明X对Y存在影响关系这件事至少有99%的把握,统计语言描述为X在0.01水平上呈现显著性。
如果P值小于0.05(且大于或等于0.01),则称作在0.05水平上显著。例如,研究人员在研究不同性别人群的购买意愿是否有明显的差异时,如果对应的P值为0.01,则说明在0.05水平上呈现出显著性差异,即说明不同性别人群的购买意愿有着明显的差异,而且对此类差异至少有95%的把握。绝大多数研究希望P值小于0.05,即说明研究对象之间有影响、有关系或有差异等。但个别地方需要P值大于0.05,如方差齐性检验时需要P值大于0.05(此处P值大于0.05说明方差不相等)。
假设检验,我们可以把这个词分为“假设”和“检验”来看。
“假设”这个词带了不确定性,常说假设一个事情发生了就怎么样,就是这个事情可能发生,也可能不发生,所以我们从概率这里说起。
生活中很多事件发生看似是随机的、偶然的,比如你打麻将扔骰子,扔到1就是1,扔到6就是6,但实际上这个事件是服从一定概率分布的——均匀分布,扔到1~6这六个数的概率是一样的,都是六分之一。
均匀分布的特点就是事件的各种情况发生的概率是相等的。这种分布是很简单的。然后现在来说另外一种很常见很重要应用很广泛的分布——正态分布。
正态分布是一种随机变量是具有钟形概率分布的随机变量,许多变量的概率分布都服从正态分布。例如:某地区儿童的发育特征,身高。体重等。在同一条件下,产品的质量以平均质量为中心上下摆动,特别差或者特别好的都是少数,多数处于中间状态,正态分布是最重要的一种连续型分布,有着非常广泛的应用。
显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
SPSSAU操作计算:
如果手工计算,需要计算出F值,最后查表,然后判断是否有显著性差异,最后得到结论,使用SPSSAU直接将分析项拖拽到分析框内(过程简单,这里不展示),最后得到F值为0.606,p值为0.613大于0.1,说明不同学历对产品满意度没有显著性差异。