xlnx的n阶导数是多少?
1个回答
展开全部
xlnx的n阶导数是 (-1)n/Xn-1 (n>1)。
Y=XLnX
Y’=LnX+1 Y"=1/X
Y(n)=(Y")(n-2)
=(1/X)(n-2)
=(-1)n/Xn-1
Y(n) = LnX+1 (n=1)
= (-1)n/Xn-1 (n>1)
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询