高中数学反三角函数
关于高中数学反三角函数同学们是否已经掌握牢固?下面是由我为大家整理的高中数学反三角函数的知识点,希望对大家有帮助!
反三角函数
反三角函数的和差公式与对应的三角函数的和差公式没有关系y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]
y=arccos(x),定义域[-1,1] , 值域[0,π]
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)
y=arccot(x),定义域(-∞,+∞),值域(0,π)
sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得
其他几个用类似方法可得
cos(arccos x)=x,arccos(-x)=π-arccos x
tan(arctan x)=x,arctan(-x)=-arctanx
反三角函数其他公式
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x
当 x∈[-π/2,π/2] 有arcsin(sinx)=x
x∈[0,π], arccos(cosx)=x
x∈(-π/2,π/2), arctan(tanx)=x
x∈(0,π), arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx类似
若 (arctanx+arctany)∈(-π/2,π/2),则 arctanx+arctany=arctan((x+y)/(1-xy))