圆周率历史手抄报内容
圆周率历史手抄报内容:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π
的近似值3.1416。汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值
不太准确,但它简单易理解,所以也在亚洲风行了一阵。王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相
比,误差小於八亿分之一。这个纪录在一千年后才给打破。
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605。
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
第一个快速算法由英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:π/4=4 arctan1/5-arctan 1/239,其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。
电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世界上首部电脑ENIAC(Electronic Numerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。