已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵
1个回答
展开全部
因为 A^2-2A+2E=0,
所以 A(A-2E) = -2E
所以 A 可逆,且 A^-1 = -1/2 (A-2E).
再由 A^2-2A+2E=0
A(A-3E) + (A-3E) +5E = 0
所以 (A+E)(A-3E) = -5E
所以 A-3E 可逆,且 (A-3E)^-1 = -1/5 (A+E).
所以 A(A-2E) = -2E
所以 A 可逆,且 A^-1 = -1/2 (A-2E).
再由 A^2-2A+2E=0
A(A-3E) + (A-3E) +5E = 0
所以 (A+E)(A-3E) = -5E
所以 A-3E 可逆,且 (A-3E)^-1 = -1/5 (A+E).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询