设f(x)=∫(x^2到2) dt/√(1+t^2),已知g(y)是f(x)的反函数,则g′(y)=?
展开全部
y = f(x),x = g(y)
y = ∫(x²~2) dt/√(1 + t²)
dy/dx = d(x²)/dx · 1/√(1 + x⁴) = 2x/√(1 + x⁴)
dx/dy = 1/dy/dx = 1/[2x/√(1 + x⁴)] = √(1 + x⁴)/(2x)
即g'(y) = √(1 + x⁴)/(2x),其中x是y的函数,即x = g(y)的形式,8,设f(x)=∫(x^2到2) dt/√(1+t^2),已知g(y)是f(x)的反函数,则g′(y)=
最后g′(y)的表达式是用x的表达式还是用y的表达式来表示
y = ∫(x²~2) dt/√(1 + t²)
dy/dx = d(x²)/dx · 1/√(1 + x⁴) = 2x/√(1 + x⁴)
dx/dy = 1/dy/dx = 1/[2x/√(1 + x⁴)] = √(1 + x⁴)/(2x)
即g'(y) = √(1 + x⁴)/(2x),其中x是y的函数,即x = g(y)的形式,8,设f(x)=∫(x^2到2) dt/√(1+t^2),已知g(y)是f(x)的反函数,则g′(y)=
最后g′(y)的表达式是用x的表达式还是用y的表达式来表示
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询