设A,B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB=BA?

 我来答
京斯年0GZ
2022-11-01 · TA获得超过6211个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.7万
展开全部
因为A,B都是n阶对称矩阵,故A=A',B=B'.
1)充分性.
由于AB=BA
所以(AB)'=(BA)'=A'B'=AB.
故AB是对称矩阵.
2)必要性.
由于AB是对称矩阵,得
(AB)'=AB,
B'A'=AB,
BA=AB.
故命题成立.,9,为什么在证必要性的时候 ab的转置等于ab,2,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式