
非齐次线性方程组Ax=b如何解答?
展开全部
非齐次线性方程组Ax=b的求解方法:
1、对增广矩阵作初等行变换,化为阶梯形矩阵;
2、求出导出组Ax=0的一个基础解系;
3、求非齐次线性方程组Ax=b的一个特解。(为简捷,可令自由变量全为0)
4、按解的结构 ξ(特解)+k1a1+k2a2+…+krar(基础解系) 写出通解。
注意:当方程组中含有参数时,分析讨论要严谨不要丢情况,此时的特解往往比较繁。
扩展资料:
对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。若R(A)=R(B),则进一步将B化为行最简形。设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示。
当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。
但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。
参考资料来源:百度百科--非齐次线性方程组

2023-08-01 广告
BG试验又称为G试验,是一种基于真菌细胞壁成分的血清学试验。BG试验检测的是真菌细胞壁中的葡聚糖成分。操作步骤如下:1. 左键单击【View】2. 左键单击【Residual Diagnostics】3. 左键单击【Series Corre...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
展开全部
求解 n 元非齐次线性方程组 Ax=b 步骤:
将增广矩阵化为行最简型矩阵, 求出增广矩阵的秩 r(A,b) , 系数矩阵的秩 r(A),
分三种情况讨论:
r(A,b) ≠ r(A) 时, 非齐次线性方程组 Ax=b 无解。
r(A,b) = r(A) = n 时, 非齐次线性方程组 Ax=b 有唯一解 。
r(A,b) = r(A) < n 时, 有无穷多组解, 此时, 先求出 Ax=b 的一组特解,
再求出 Ax = 0 的通解, 其和即为 Ax = b 的通解。
将增广矩阵化为行最简型矩阵, 求出增广矩阵的秩 r(A,b) , 系数矩阵的秩 r(A),
分三种情况讨论:
r(A,b) ≠ r(A) 时, 非齐次线性方程组 Ax=b 无解。
r(A,b) = r(A) = n 时, 非齐次线性方程组 Ax=b 有唯一解 。
r(A,b) = r(A) < n 时, 有无穷多组解, 此时, 先求出 Ax=b 的一组特解,
再求出 Ax = 0 的通解, 其和即为 Ax = b 的通解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询