怎样求抛物线的准线方程?
1个回答
展开全部
抛物线的准线方程公式:y=-p/2。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示、标准方程表示等等。
抛物线性质
1、焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标。
2、通径|AB|=2p。
3、焦点弦。
(1)、|AB|=p+x1+x2。
(2)、|AB|=2psin2θ2pP(y2=2px(p>0))。
(3)、|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦)。
(4)、焦点弦的端点坐标A(x1,y1),B(x2,y2),则有x1x2=,y1y2=-p24p2。
(5)、n=1+cosθ,m=1−cosθm+n=p。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询