
求数列1/(3*5),1/(5*7),1/(7*9).的前N项和 3*5是:3乘以5的意思
1个回答
展开全部
an = 1/(2n+1)(2n+3)
1/(3*5)=1/2*(1/3 - 1/5)
1/(5*7)=1/2*(1/5 - 1/7)
1/(7*9)=1/2*(1/7 - 1/9)
...
aN-1 = 1/(2N-1)(2N+1) = 1/2(1/(2N-1) - 1/(2N+1)
aN = 1/(2N+1)(2N+3) = 1/2(1/(2N+1) - 1/(2N+3))
所以的前N项和
=a1 + a2 +...+aN-1 + aN
=1/2(1/3 - 1/(2N+3))
=N/3(2N+3))
1/(3*5)=1/2*(1/3 - 1/5)
1/(5*7)=1/2*(1/5 - 1/7)
1/(7*9)=1/2*(1/7 - 1/9)
...
aN-1 = 1/(2N-1)(2N+1) = 1/2(1/(2N-1) - 1/(2N+1)
aN = 1/(2N+1)(2N+3) = 1/2(1/(2N+1) - 1/(2N+3))
所以的前N项和
=a1 + a2 +...+aN-1 + aN
=1/2(1/3 - 1/(2N+3))
=N/3(2N+3))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询