一道线性代数问题设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3,b 我来答 1个回答 #热议# 生活中有哪些实用的心理学知识? 新科技17 2022-10-20 · TA获得超过5865个赞 知道小有建树答主 回答量:355 采纳率:100% 帮助的人:73.1万 我也去答题访问个人页 关注 展开全部 反证:b1,b2,b3,b4线性无关:k1(a1+a2)+k2(a2+a3)+k3(a3+a4)+k4(a1+a4)=0;a1(k1+k4)+a2(k1+k2)+a3(k2+k3)+a4(k3+k4)=0;设a1,a2,a3,a4线性无关,有k1+k4=0,k1+k2=0,k2+k3=0,k3+k4=0;k1=-k2=k3=-k4;代入消常数得b1-b2+... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: