A为n阶正交阵,且det(A)=-1,证明r(A+E)<n 具体思路,
1个回答
展开全部
A是正交矩阵的充分必要条件是 AA'=E.
因为 |A| = -1 .
|A+E| = |A+AA'| = |A(E+A')| = |A||E+A'| = |A||(E+A)'| = -|E+A|.
所以 |A+E| = 0.
所以 r(A+E)
因为 |A| = -1 .
|A+E| = |A+AA'| = |A(E+A')| = |A||E+A'| = |A||(E+A)'| = -|E+A|.
所以 |A+E| = 0.
所以 r(A+E)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询