求:数列1^2+2^2+3^3+...+n^2的前n项和.
展开全部
你确定第三项是3^3吗?不是的话这么算:
Sn=1×1+2×2+…+n×n
=1×﹙2-1﹚+2×﹙3-1﹚+…+n﹙n+1-1﹚
=1×2+2×3+…+n﹙n+1﹚-n﹙n+1﹚/2
因为n﹙n+1﹚=[n﹙n+1﹚﹙n+2﹚-﹙n-1﹚n﹙n+1﹚]/3
所以
Sn=﹛﹙1×2×3-0×1×2﹚/3+﹙2×3×4-1×2×3﹚/3+…+[n﹙n+1﹚﹙n+2﹚-﹙n-1﹚n﹙n+1﹚]/3﹜-n﹙n+1﹚/2
=[n﹙n+1﹚﹙n+2﹚]/3-n﹙n+1﹚/2
= n(n+1)(2n+1)/6
Sn=1×1+2×2+…+n×n
=1×﹙2-1﹚+2×﹙3-1﹚+…+n﹙n+1-1﹚
=1×2+2×3+…+n﹙n+1﹚-n﹙n+1﹚/2
因为n﹙n+1﹚=[n﹙n+1﹚﹙n+2﹚-﹙n-1﹚n﹙n+1﹚]/3
所以
Sn=﹛﹙1×2×3-0×1×2﹚/3+﹙2×3×4-1×2×3﹚/3+…+[n﹙n+1﹚﹙n+2﹚-﹙n-1﹚n﹙n+1﹚]/3﹜-n﹙n+1﹚/2
=[n﹙n+1﹚﹙n+2﹚]/3-n﹙n+1﹚/2
= n(n+1)(2n+1)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询