高中数学三角函数证明题asinα+bsinβ+csinγ=0,acosα+bcosβ+ccosγ=0,且(sinαsin?
1个回答
展开全部
由原式
asinα+bsinβ+csinγ=0,acosα+bcosβ+ccos=0;
asinα+bsinβ= -csinγ,acosα+bcosβ=- ccosγ;
(acosα +bcosβ)/(asinα+bsinβ)=cosγ/sinγ;(sinαsinβsinγcosαcosβcosγ≠0 ∴abc≠0)
acosαsinγ+bcosβsinγ=asinαcosγ+bsinβcosγ;
acosαsinγ- asinαcosγ= bsinβcosγ- bcosβsinγ;
asin(γ-α)=bsin(β-γ);
sin(γ-α)/b= sin(β-γ)/a;
同理可证,9,高中数学三角函数证明题
asinα+bsinβ+csinγ=0,acosα+bcosβ+ccosγ=0,且(sinαsinβsinγcosαcosβcosγ≠0),求证sin(β-γ)/a=sin(γ-α)/b=sin(α-β)/c
asinα+bsinβ+csinγ=0,acosα+bcosβ+ccos=0;
asinα+bsinβ= -csinγ,acosα+bcosβ=- ccosγ;
(acosα +bcosβ)/(asinα+bsinβ)=cosγ/sinγ;(sinαsinβsinγcosαcosβcosγ≠0 ∴abc≠0)
acosαsinγ+bcosβsinγ=asinαcosγ+bsinβcosγ;
acosαsinγ- asinαcosγ= bsinβcosγ- bcosβsinγ;
asin(γ-α)=bsin(β-γ);
sin(γ-α)/b= sin(β-γ)/a;
同理可证,9,高中数学三角函数证明题
asinα+bsinβ+csinγ=0,acosα+bcosβ+ccosγ=0,且(sinαsinβsinγcosαcosβcosγ≠0),求证sin(β-γ)/a=sin(γ-α)/b=sin(α-β)/c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询