隐函数求导法怎么求
在隐函数中,y³是y的函数,而y是x的函数,因此将y³对x求导时要用复合函数的链式求导法,即dy³/dx=(dy³/dy)(dy/dx)=3y²y'。
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。
举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。
扩展资料
设方程P(x, y)=0确定y是x的函数,并且可导。如今可以利用复合函数求导公式求出隐函数y对x的导数。
例1 方程 x2+y2-r2=0确定了一个以x为自变量,以y为因变量的数,为了求y对x的导数,将上式两边逐项对x求导,并将y2看作x的复合函数,则有:
(x2)+ (y2)-(r2)=0
即 2x+2yy'=0
于是得y'=-x/y 。
从上例可以看到,在等式两边逐项对自变量求导数,即可得到一个包含y'的一次方程, 解出y'即为隐函数的导数。
例2 求由方程y2=2px所确定的隐函数y=f(x)的导数。
解: 将方程两边同时对x求导,得:
2yy'=2p
解出y'即得
y'=p/y
参考资料来源:百度百科-隐函数