1 求由方程 xlny+ycos(xy)=x 确定的隐函数的导数 dy/dx.-|||-2 求 y
2个回答
展开全部
隐函数的导数可以这样求解。遇到自变量x,直接运用基本函数的导数公式求导;遇到因变量y,先运用基本函数的导数公式求导,然后附加导数分号y';最后整理求得y'.
解:方程两边求导,有
(xlny)'+(ycos(xy))'=(x)'
lny+x/yy'+cos(xy)y'-y²sin(xy)-xysin(xy)y'=1
{(x/y+cos(xy)-xysin(xy)}y'=1-lny+y²sin(xy)
dy/dx=y'={1-lny+y²sin(xy)}/{(x/y+cos(xy)-xysin(xy)}
解:方程两边求导,有
(xlny)'+(ycos(xy))'=(x)'
lny+x/yy'+cos(xy)y'-y²sin(xy)-xysin(xy)y'=1
{(x/y+cos(xy)-xysin(xy)}y'=1-lny+y²sin(xy)
dy/dx=y'={1-lny+y²sin(xy)}/{(x/y+cos(xy)-xysin(xy)}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询