五年级下数学题
展开全部
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式 Sin2A=2SinA*CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/(1-tanA^2)
三倍角公式 sin3α=4sinα·sin(60+α)sin(60-α)
cos3α=4cosα·cos(60+α)cos(60-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
半角公式 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sssc(+) sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] sscs(-) cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cccc(+) cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] -ccss(-) tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式 Sin2A=2SinA*CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/(1-tanA^2)
三倍角公式 sin3α=4sinα·sin(60+α)sin(60-α)
cos3α=4cosα·cos(60+α)cos(60-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
半角公式 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sssc(+) sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] sscs(-) cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cccc(+) cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] -ccss(-) tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |