对数函数和指数函数常用的解题方法

对数函数和指数函数常用的解题方法,如同取对数和换元之类的。... 对数函数和指数函数常用的解题方法,如同取对数和换元之类的。 展开
 我来答
爱运动的小矮子
推荐于2016-01-11 · 左手盘菩提丶右手举哑铃
爱运动的小矮子
采纳数:6602 获赞数:41045

向TA提问 私信TA
展开全部
一、对数函数运算法则既常用的解题方法:
1、a^log(a)(b)=b
2、log(a)(a)=1
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);   
5、log(a)(M^n)=nlog(a)(M)
6、log(a)[M^(1/n)]=log(a)(M)/n
对数函数的定义:一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
2、指数函数解题法则既方法:
在函数y=a^x中可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则单调递减。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过定点(0,1)。
(8) 指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
(10)当两个指数函数中的a互为倒数时,此函数图像是偶函数。
例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数; ⑵y=(1/4)^x
因为0<1/4<1,所以y=(1/4)^x在R上是减函数1对数的概念
如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真
数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0;
③loga1=0,logaa=1,alogaN=N,logaab=b.
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718
28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化
式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质
如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN.
(2)loga(M/N)=logaM-logaN. (3)logaMn=nlogaM (n∈R).
指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
柯南aabb
2009-11-13 · TA获得超过153个赞
知道答主
回答量:60
采纳率:0%
帮助的人:43.3万
展开全部
(1)可通过指数函数或对数函数的单调性来比较两个指数式或对数式的大小。

(2)求函数y=af(x)的单调区间,应先求出f(x)的单调区间,然后根据y=au的单调性来求出函数y=af(x)的单调区间.求函数y=logaf(x)的单调区间,则应先求出f(x)的单调区间,然后根据y=logau的单调性来求出函数y=logaf(x)的单调区间。

(3)根据对数的定义,可将一些对数问题转化为指数问题来解。

(4)通过换底,可将不同底数的对数问题转化为同底的对数问题来解。

(5)指数方程的解法:

(iii)对于方程f(ax)=0,可令ax=y,换元化为f(y)=0。

(6)对数方程的解法:

(ii)对数方程f(logax)=0,可令logax=y化为f(y)=0。

(7)对于某些特殊的指数方程或对数方程可通过作函数图象来求其近似解。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式