如何用凑微分的方法解决不定积分的计算?
1个回答
展开全部
凑微分法是一种基于代数技巧的积分计算方法,通常用于解决一些简单的不定积分。下面介绍凑微分法的基本步骤:
1.观察被积函数,将其中某一项拆分成几个简单的函数相乘的形式,例如:\frac{1}{x^2+x}=\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1},其中 A,B 是待定系数。
2.将上述拆分后的式子通分,得到一个分母为 x(x+1) 的分式,分子为 A(x+1)+Bx。
3.比较原式与上式的分子,得到待定系数 A 和 B 的值。
4.将晌宏原式拆分成宴谨册上述简单的函数相加的形式,将得到的 A,B 的值代入,然后进行积分。
下面通过一个例子来说明凑微分法的具体应用:
计算不定积分:\int \frac{3x+1}{x^2+4x+3} dx。
首先将分母拆分为两个一次项的乘积:x^2+4x+3=(x+1)(x+3)。
然后将分式拆分成两个简单分式的和:\frac{3x+1}{x^2+4x+3}=\frac{A}{x+1}+\frac{B}{x+3},其中 A,B 是待定系数。
通分得到:3x+1=A(x+3)+B(x+1)。
比较系数得到:A=-2,B=5。
将上述结果代入原式:\int \frac{3x+1}{x^2+4x+3} dx=\int \frac{-2}{x+1}+\frac{5}{x+3} dx。
对上式分别进行积分,得到:-2\ln|x+1|+5\ln|x+3|+C,其中 C 是常数。
因此,原不定积分的解为:\int \frac{3x+1}{x^2+4x+3} dx=-2\ln|x+1|+5\ln|x+3|+C。
需要注意的是,凑微分法只适用于一些简单的分式,对于复杂的分式或其他类型的函数,可能需要使用其他方法进晌毁行积分计算。
1.观察被积函数,将其中某一项拆分成几个简单的函数相乘的形式,例如:\frac{1}{x^2+x}=\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1},其中 A,B 是待定系数。
2.将上述拆分后的式子通分,得到一个分母为 x(x+1) 的分式,分子为 A(x+1)+Bx。
3.比较原式与上式的分子,得到待定系数 A 和 B 的值。
4.将晌宏原式拆分成宴谨册上述简单的函数相加的形式,将得到的 A,B 的值代入,然后进行积分。
下面通过一个例子来说明凑微分法的具体应用:
计算不定积分:\int \frac{3x+1}{x^2+4x+3} dx。
首先将分母拆分为两个一次项的乘积:x^2+4x+3=(x+1)(x+3)。
然后将分式拆分成两个简单分式的和:\frac{3x+1}{x^2+4x+3}=\frac{A}{x+1}+\frac{B}{x+3},其中 A,B 是待定系数。
通分得到:3x+1=A(x+3)+B(x+1)。
比较系数得到:A=-2,B=5。
将上述结果代入原式:\int \frac{3x+1}{x^2+4x+3} dx=\int \frac{-2}{x+1}+\frac{5}{x+3} dx。
对上式分别进行积分,得到:-2\ln|x+1|+5\ln|x+3|+C,其中 C 是常数。
因此,原不定积分的解为:\int \frac{3x+1}{x^2+4x+3} dx=-2\ln|x+1|+5\ln|x+3|+C。
需要注意的是,凑微分法只适用于一些简单的分式,对于复杂的分式或其他类型的函数,可能需要使用其他方法进晌毁行积分计算。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询