冒泡排序算法的原理如下:
1,比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2,对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3,针对所有的元素重复以上的步骤,除了最后一个。
4,持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
扩展资料:
冒泡排序算法分析:
1,时间复杂度
若文件的初始状态是正序的,一趟扫描即可完成排序。所需的关键字比较次数 和记录移动次数
均达到最小值: , 。所以,冒泡排序最好的时间复杂度为 。 若初始文件是反序的,需要进行 趟排序。每趟排序要进行
次关键字的比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:
冒泡排序的最坏时间复杂度为 。综上,因此冒泡排序总的平均时间复杂度为 。
2,算法稳定性:
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
参考资料:百度百科----冒泡排序
冒泡排序算法的原理如下:
1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2.对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3.针对所有的元素重复以上的步骤,除了最后一个。
4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
扩展资料:
算法优化:当里面的一层循环在某次扫描中没有交换则说明此时数组已经全部有序,无需再再次扫描。
所以可以添加一个标记每交换一次就进行标记,如果某次没有没有标记就说明已经有序了
写冒泡排序可以排序多个字符串。假设对4个字符串进行排序,每个字符串不超过10个 ,那么可以把这三个字符串看成一个二维数组,这样一个一位数组的指针就可以访问该数组,然后根据冒泡排序的原理就可以排序了。
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
参考资料:百度百科——冒泡排序
冒泡排序算法的原理如下:
1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2.对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3.针对所有的元素重复以上的步骤,除了最后一个。
4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
拓展资料:
1,冒泡排序:
是一种计算机科学领域的较简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名“冒泡排序”。
2.算法稳定性
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
由于在排序过程中总是小数往前放,大数往后放,相当于气泡往上升,所以称作冒泡排序。
用二重循环实现,外循环变量设为i,内循环变量设为j。外循环重复9次,内循环依次重复9,8,...,1次。每次进行比较的两个元素都是与内循环j有关的,它们可以分别用a[j]和a[j+1]标识,i的值依次为1,2,...,9,对于每一个i, j的值依次为1,2,...10-i。
产生
在许多程序设计中,我们需要将一个数列进行排序,以方便统计,常见的排序方法有冒泡排序,二叉树排序,选择排序等等。而冒泡排序一直由于其简洁的思想方法和比较高的效率而倍受青睐。
排序过程
设想被排序的数组R〔1..N〕垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
『就是两两比较,小的靠右
『从前往后,从后往前
『重复N次后就排好序了。。。(就像冒气泡一样将小数“冒”上来,故曰冒泡法)