三次函数因式分解技巧

 我来答
慕容凡语
2023-08-07 · TA获得超过109个赞
知道大有可为答主
回答量:2647
采纳率:98%
帮助的人:95万
展开全部

三次函数因式分解技巧:寻找根的方法在进行三次函数因式分解之前,我们需要先找到函数的根或零点,以确定因式的形式。

资料拓展:

有理根定理:如果有理数a/b(a、b互质)是多项式的有理根,则a是常数项的因数,b是首项系数的因数。辗转相除法:将多项式f(x)除以(x-a)(a是一个有理数),如果余数为0,则a是f(x)的一个根。

因式分解法:因式分解法不是对所有的三次方程都适用,只对一些三次方程适用.对于大多数的三次方程,只有先求出它的根,才能做因式分解.当然,因式分解的解法很简便,直接把三次方程降次,例如:解方程x3-x=0,对左边作因式分解,得x(x+1)(x-1)=0。

换元法:对于一般形式的三次方程,先用上文中提到的配方和换元,将方程化为x3+px+q=0的特殊性。如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。因式分解没有普遍适用的公式,因此针对具体情况进行适当选择,才能快速有效地完成。

盛金公式解法:三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

对多项式的首项做负号提取,使其第一项为正数。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式