被除数的中间有0,商的中间一定有0

 我来答
小鸥QS
2023-08-08 · 超过363用户采纳过TA的回答
知道小有建树答主
回答量:1289
采纳率:100%
帮助的人:29.2万
展开全部

被除数的中间有0,商的中间一定有0是错误的。

我们举两个例子来回答这个问题,比如603÷3=201,201的中间有0。比如102÷2=51,被除数102中间有0,但是商51不含0。
因为存在着反例,所以原假设不存在,因此被除数中间有0的,商中间不一定有0

拓展资料

除法是四则运算之一。已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
两个数相除又叫做两个数的比。若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c÷b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。

1、1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.

2、若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

3、若一个整数的数字和能被3整除,则这个整数能被3整除。

4、若一个整数的末尾两位数能被4整除,则这个数能被4整除。

5、若一个整数的末位是0或5,则这个数能被5整除。

6、若一个整数能被2和3整除,则这个数能被6整除。

7、若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

8、若一个整数的未尾三位数能被8整除,则这个数能被8整除。

9、若一个整数的数字和能被9整除,则这个整数能被9整除。

10、若一个整数的末位是0,则这个数能被10整除。

11、若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!

12、若一个整数能被3和4整除,则这个数能被12整除。

13、若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

14、若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

15、若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

16、若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

17、若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

18、若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式