垂径定理9个推论

 我来答
古娜拉乌漆嘛黑sjy
2023-08-08 · TA获得超过215个赞
知道大有可为答主
回答量:5487
采纳率:100%
帮助的人:76.1万
展开全部

垂径定理9个推论如下:

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧。推论3:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论4:的两条平行弦所夹的弧相等。推论5:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧,其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧。

推论6:平分弦(不是直径),的直径垂直于这条弦,并且平分这条弦所对的两段弧推论7:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论8:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论9:在同圆或者等圆中,两条平行弦所夹的弧相等

拓展知识

垂径定理是数学平面几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。数学表达为:直径DC垂直于弦AB,则AE等于EB,弧AD等于弧BD(包括优弧与劣弧),半圆CAD等于半圆CBD。

定理简史

欧几里得(古希腊数学家希腊文:Ευκλειδης.,公元前330年~公元前275年,)几何原本第I卷中的第12个命题实际即为垂径定理,这可能是最早的有关于垂径定理的记载。

定理意义

垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

欧几里得

(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。

北京埃德思远电气技术咨询有限公司
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式