分数裂项公式

 我来答
猫先生143
2023-08-09 · TA获得超过650个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:380万
展开全部

分数裂项公式介绍如下:

解:an=1/[N(N+1)]=(1/N)- [1/(N+1)](裂项)

Sn=1/(1×2) +1/(2×3) +1/(3×4) +1/(4×5)+....+1/N(N+1)

=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/N)- [1/(N+1)](裂项求和)

= 1-1/(N+1)

= N/(N+1)

数列的裂项相消法三大特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” 。

(3)分母上几个因数间的差是一个定值裂差型运算的核心环节是“两两抵消达到简化的目的”。

裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧。

例子:

求和:1/2+1/6+1/12+1/20

=1/(1*2)+1/(2*3)+1/(3*4)1/(4*5)

=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)

=1-1/5=4/5

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式