几何体的分类
几何体是由面围成的。面有平面,有曲面。例如长方体是由六个平面围成的;球是由一个曲面围成的;圆柱是由一个曲面和两个平面围成的。按构成体的主要元素——面的特点,可以把体分成两类:
第一类是有曲面参与其中的曲面几何体,也称曲面立体,如:圆柱体、球体。
第二类是纯由平面围成的平面几何体,即由若干个平面多边形围成的多面体,如棱柱体、正方体。
平面立方体
由若干平面围成的基本几何体称为平面立体。平面立体主要有棱柱和棱锥两种。棱柱的棱线互相平行,棱锥的棱线交于一点,棱锥被截顶则形成棱台。平面立体以其棱线数命名,如四棱柱、六棱柱、五棱锥、三棱锥、四棱台等。
曲面立体
由曲面或曲面与平面围成的基本几何体称为曲面立体。常见曲面立体有圆柱、圆锥、圆球等。它们的曲表面可以看作是母线绕轴线回转而形成的,因此,这类曲面立体又称为回转体,其曲表面称为回转面。
素线与轮廓素线:
1、素线:母线在旋转过程中的每一个具体位置称为曲面的素线。曲面是素线的集合。
2、轮廓素线:当曲面立体在三投影面体系中的位置确定后,投影时构成物体轮廓的素线称为轮廓素线。显然,当圆柱轴线垂直于H面时,圆柱有四条轮廓素线,其中两条为正视方向轮廓素线(圆柱面上最左、最右的两条素线),另外两条为侧视方向轮廓素线(圆柱面上最前、最后的两条素线)
同理,圆锥面上也有四条轮廓素线;圆球面上有三条轮廓素线,分别为正平最大圆、水平最大圆和侧平最大圆。
2024-06-11 广告